Publications

Synthetic biology open language visual (SBOL visual) version 2.2

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.2 of SBOL Visual, which builds on the prior SBOL Visual 2.1 in several ways. First, the grounding of molecular species glyphs is changed from BioPAX to SBO, aligning with the use of SBO terms for interaction glyphs. Second, new glyphs are added for proteins, introns, and polypeptide regions (e. g., protein domains), the prior recommended macromolecule glyph is deprecated in favor of its alternative, and small polygons are introduced as alternative glyphs for simple chemicals.

Synthetic biology open language (SBOL) version 3.0.0

Synthetic biology open language (SBOL) version 3.0.0

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.

Communicating Structure and Function in Synthetic Biology Diagrams

Biological engineers often find it useful to communicate using diagrams. These diagrams can include information both about the structure of the nucleic acid sequences they are engineering and about the functional relationships between features of these sequences and/or other molecular species. A number of conventions and practices have begun to emerge within synthetic biology for creating such diagrams, and the Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard to organize, systematize, and extend such conventions in order to produce a coherent visual language. Here, we describe SBOL Visual version 2, which expands previous diagram standards to include new functional interactions, categories of molecular species, support for families of glyph variants, and the ability to indicate modular structure and mappings between elements of a system. SBOL Visual 2 also clarifies a number of requirements and best practices, significantly expands the collection of glyphs available to describe genetic features, and can be readily applied using a wide variety of software tools, both general and bespoke.

SBOL-OWL: An Ontological Approach for Formal and Semantic Representation of Synthetic Biology Information

Standard representation of data is key for the reproducibility of designs in synthetic biology. The Synthetic Biology Open Language (SBOL) has already emerged as a data standard to represent information about genetic circuits, and it is based on capturing data using graphs. The language provides the syntax using a free text document that is accessible to humans only. This paper describes SBOL-OWL, an ontology for a machine understandable definition of SBOL. This ontology acts as a semantic layer for genetic circuit designs. As a result, computational tools can understand the meaning of design entities in addition to parsing structured SBOL data. SBOL-OWL not only describes how genetic circuits can be constructed computationally, it also facilitates the use of several existing Semantic Web tools for synthetic biology. This paper demonstrates some of these features, for example, to validate designs and check for inconsistencies. Through the use of SBOL-OWL, queries can be simplified and become more intuitive. Moreover, existing reasoners can be used to infer information about genetic circuit designs that cannot be directly retrieved using existing querying mechanisms. This ontological representation of the SBOL standard provides a new perspective to the verification, representation, and querying of information about genetic circuits and is important to incorporate complex design information via the integration of biological ontologies.

A Computational Workflow for the Automated Generation of Models of Genetic Designs

Computational models are essential to engineer predictable biological systems and to scale up this process for complex systems. Computational modeling often requires expert knowledge and data to build models. Clearly, manual creation of models is not scalable for large designs. Despite several automated model construction approaches, computational methodologies to bridge knowledge in design repositories and the process of creating computational models have still not been established. This paper describes a workflow for automatic generation of computational models of genetic circuits from data stored in design repositories using existing standards. This workflow leverages the software tool SBOLDesigner to build structural models that are then enriched by the Virtual Parts Repository API using Systems Biology Open Language (SBOL) data fetched from the SynBioHub design repository. The iBioSim software tool is then utilized to convert this SBOL description into a computational model encoded using the Systems Biology Markup Language (SBML). Finally, this SBML model can be simulated using a variety of methods. This workflow provides synthetic biologists with easy to use tools to create predictable biological systems, hiding away the complexity of building computational models. This approach can further be incorporated into other computational workflows for design automation.

Synthetic Biology Open Language Visual (SBOL Visual) Version 2.1

Abstract People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons.

Synthetic Biology Open Language (SBOL) Version 2.3

textlesssection class="abstract"textgreatertextlessh2 class="abstractTitle text-title my-1" id="d230e2"textgreaterAbstracttextless/h2textgreatertextlessptextgreaterSynthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems is to improve the exchange of information about designed systems between laboratories. The synthetic biology open language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.3.0 of SBOL, which builds upon version 2.2.0 published in last year’s JIB Standards in Systems Biology special issue. In particular, SBOL 2.3.0 includes means of succinctly representing sequence modifications, such as insertion, deletion, and replacement, an extension to support organization and attachment of experimental data derived from designs, and an extension for describing numerical parameters of design elements. The new version also includes specifying types of synthetic biology activities, unambiguous locations for sequences with multiple encodings, refinement of a number of validation rules, improved figures and examples, and clarification on a number of issues related to the use of external ontology terms.textless/ptextgreatertextless/sectiontextgreater

Design of asynchronous genetic circuits

Communicating structure and function in synthetic biology diagrams

SynBioHub: A Standards-Enabled Design Repository for Synthetic Biology

The SynBioHub repository (https://synbiohub.org) is an open-source software project that facilitates the sharing of information about engineered biological systems. SynBioHub provides computational access for software and data integration, and a graphical user interface that enables users to search for and share designs in a Web browser. By connecting to relevant repositories (e.g., the iGEM repository, JBEI ICE, and other instances of SynBioHub), the software allows users to browse, upload, and download data in various standard formats, regardless of their location or representation. SynBioHub also provides a central reference point for other resources to link to, delivering design information in a standardized format using the Synthetic Biology Open Language (SBOL). The adoption and use of SynBioHub, a community-driven effort, has the potential to overcome the reproducibility challenge across laboratories by helping to address the current lack of information about published designs.

Data Integration and Mining for Synthetic Biology Design

One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.

Synthetic Biology Open Language (SBOL) Version 2.1.0

textlesssection class="abstract"textgreatertextlessh2 class="abstractTitle text-title my-1" id="d807e2"textgreaterSummarytextless/h2textgreatertextlessptextgreaterSynthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year’s JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.textless/ptextgreatertextless/sectiontextgreater

The SBOL Stack: A Platform for Storing, Publishing, and Sharing Synthetic Biology Designs

Recently, synthetic biologists have developed the Synthetic Biology Open Language (SBOL), a data exchange standard for descriptions of genetic parts, devices, modules, and systems. The goals of this standard are to allow scientists to exchange designs of biological parts and systems, to facilitate the storage of genetic designs in repositories, and to facilitate the description of genetic designs in publications. In order to achieve these goals, the development of an infrastructure to store, retrieve, and exchange SBOL data is necessary. To address this problem, we have developed the SBOL Stack, a Resource Description Framework (RDF) database specifically designed for the storage, integration, and publication of SBOL data. This database allows users to define a library of synthetic parts and designs as a service, to share SBOL data with collaborators, and to store designs of biological systems locally. The database also allows external data sources to be integrated by mapping them to the SBOL data model. The SBOL Stack includes two Web interfaces: the SBOL Stack API and SynBioHub. While the former is designed for developers, the latter allows users to upload new SBOL biological designs, download SBOL documents, search by keyword, and visualize SBOL data. Since the SBOL Stack is based on semantic Web technology, the inherent distributed querying functionality of RDF databases can be used to allow different SBOL stack databases to be queried simultaneously, and therefore, data can be shared between different institutes, centers, or other users.

BBF RFC 108: Synthetic Biology Open Language (SBOL) Version 2.0.0

The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards.

The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology

The synthetic biology research community describes a standard language for exchanging designs of biological ‘parts’.

A Methodology to Annotate Systems Biology Markup Language Models with the Synthetic Biology Open Language

Recently, we have begun to witness the potential of synthetic biology, noted here in the form of bacteria and yeast that have been genetically engineered to produce biofuels, manufacture drug precursors, and even invade tumor cells. The success of these projects, however, has often failed in translation and application to new projects, a problem exacerbated by a lack of engineering standards that combine descriptions of the structure and function of DNA. To address this need, this paper describes a methodology to connect the systems biology markup language (SBML) to the synthetic biology open language (SBOL), existing standards that describe biochemical models and DNA components, respectively. Our methodology involves first annotating SBML model elements such as species and reactions with SBOL DNA components. A graph is then constructed from the model, with vertices corresponding to elements within the model and edges corresponding to the cause-and-effect relationships between these elements. Lastly, the graph is traversed to assemble the annotating DNA components into a composite DNA component, which is used to annotate the model itself and can be referenced by other composite models and DNA components. In this way, our methodology can be used to build up a hierarchical library of models annotated with DNA components. Such a library is a useful input to any future genetic technology mapping algorithm that would automate the process of composing DNA components to satisfy a behavioral specification. Our methodology for SBML-to-SBOL annotation is implemented in the latest version of our genetic design automation (GDA) software tool, iBioSim.

Synthetic Biology Open Language (SBOL) Version 1.1.0

In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation.

An End-to-End Workflow for Engineering of Biological Networks from High-Level Specifications

We present a workflow for the design and production of biological networks from high-level program specifications. The workflow is based on a sequence of intermediate models that incrementally translate high-level specifications into DNA samples that implement them. We identify algorithms for translating between adjacent models and implement them as a set of software tools, organized into a four-stage toolchain: Specification, Compilation, Part Assignment, and Assembly. The specification stage begins with a Boolean logic computation specified in the Proto programming language. The compilation stage uses a library of network motifs and cellular platforms, also specified in Proto, to transform the program into an optimized Abstract Genetic Regulatory Network (AGRN) that implements the programmed behavior. The part assignment stage assigns DNA parts to the AGRN, drawing the parts from a database for the target cellular platform, to create a DNA sequence implementing the AGRN. Finally, the assembly stage computes an optimized assembly plan to create the DNA sequence from available part samples, yielding a protocol for producing a sample of engineered plasmids with robotics assistance. Our workflow is the first to automate the production of biological networks from a high-level program specification. Furthermore, the workflow’s modular design allows the same program to be realized on different cellular platforms simply by swapping workflow configurations. We validated our workflow by specifying a small-molecule sensor-reporter program and verifying the resulting plasmids in both HEK 293 mammalian cells and in E. coli bacterial cells.

Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca

Bacterial genes associated with a single trait are often grouped in a contiguous unit of the genome known as a gene cluster. It is difficult to genetically manipulate many gene clusters because of complex, redundant, and integrated host regulation. We have developed a systematic approach to completely specify the genetics of a gene cluster by rebuilding it from the bottom up using only synthetic, well-characterized parts. This process removes all native regulation, including that which is undiscovered. First, all noncoding DNA, regulatory proteins, and nonessential genes are removed. The codons of essential genes are changed to create a DNA sequence as divergent as possible from the wild-type (WT) gene. Recoded genes are computationally scanned to eliminate internal regulation. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits regulates the conditions and dynamics of gene expression. We applied this approach to an agriculturally relevant gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N2 to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. We constructed a “refactored” gene cluster that shares little DNA sequence identity with WT and for which the function of every genetic part is defined. This work demonstrates the potential for synthetic biology tools to rewrite the genetics encoding complex biological functions to facilitate access, engineering, and transferability.

Title: Synthetic Biology Open Language (SBOL) Version 1.0.0

In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.0.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation.

Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems

Background Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. Results We illustrate Eugene’s capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene’s ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Conclusions Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly.

Essential information for synthetic DNA sequences