Design of Asynchronous Genetic Circuits


Most digital electronic circuits utilize a timing reference to synchronize the progression of signals and enable sequential memory elements. These designs may not be realizable in biological substrates due to the lack of a reliable high-frequency clock signal. Asynchronous designs eliminate the need for a clock with data encodings and request/acknowledge handshake protocols. This paper proposes a workflow to automate the design of asynchronous genetic circuits. This workflow extends genetic design tools by leveraging asynchronous logic design methods customized for this technology. This workflow is demonstrated on a genetic sensor that uses filtering and cellular communication to improve its reliability.